Fuzzy clustering of financial time series based on volatility spillovers
نویسندگان
چکیده
Abstract In this paper we propose a framework for fuzzy clustering of time series based on directional volatility spillovers. the case financial series, detecting clusters spillovers provides insights into market structure, which can be useful to both portfolio managers and policy makers. We measure directional—i.e. “From” “To” others—volatility with methodology generalized forecast-error variance decomposition. Then, weighted model grouping stocks similar degree By using approach, allow algorithm decide dimension spillover is more relevant clustering. Moreover, robust also proposed alleviate effect possible outlier stocks. apply analysis effects in Italian stock market.
منابع مشابه
Asset returns and volatility clustering in financial time series
An analysis of the stylized facts in financial time series is carried out. We find that, instead of the heavy tails in asset return distributions, the slow decay behaviour in autocorrelation functions of absolute returns is actually directly related to the degree of clustering of large fluctuations within the financial time series. We also introduce an index to quantitatively measure the cluste...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملFuzzy Clustering Based Segmentation of Time-Series
The segmentation of time-series is a constrained clustering problem: the data points should be grouped by their similarity, but with the constraint that all points in a cluster must come from successive time points. The changes of the variables of a time-series are usually vague and do not focused on any particular time point. Therefore it is not practical to define crisp bounds of the segments...
متن کاملFuzzy Time Series Forecasting Based On K-Means Clustering
Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting problems in which historical data are linguistic values. In this paper, we present a new fuzzy time series forecasting model, which uses the historical data as the universe of discourse...
متن کاملInterpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Operations Research
سال: 2023
ISSN: ['1572-9338', '0254-5330']
DOI: https://doi.org/10.1007/s10479-023-05560-7